Будь здоров » Фармакология » О возможности передачи особенностей поведения от родителей...

О возможности передачи особенностей поведения от родителей...

О возможности передачи особенностей поведения от родителей к потомкам было известно давно, поскольку при разведении сельскохозяйственных и домашних животных человек не только видел своеобразие их поведения, но и научился получать желаемые комбинации признаков поведения у новых пород. Наиболее отчетливые межпородные различия в поведении известны у собак.


Время существования научной дисциплины принято отсчитывать от появления первого исследования в этой области. Описанное в 1913 г. американской исследовательницей Адой Иеркс наследование комплекса злобности, пугливости и дикости у крыс ( Rattus norvegicus ) — первая экспериментальная работа по генетике поведения.


Началом самоопределения генетики поведения обычно считают год публикации первой обобщающей монографии американских ученых Дж. Фуллера и У. Томпсона "Генетика поведения" (Fuller, Thompson, 1960). Книга имела огромный успех у биологов разных специальностей. Оба автора по своему образованию не были генетиками, но, приступив к исследованию поведения, четко осознали значение генетического подхода. Не прибегая к сложным генетическим рассуждениям, они смогли убедительно показать необходимость оценки роли генотипа в формировании поведения и привести экспериментальные свидетельства этого. Еще одной работой, важной для становления этого направления, была монография Дж. Скотта и Дж. Фуллера по генетике поведения собак (см. 8.6.1).


Значительную роль в формировании генетического подхода к анализу поведения сыграли работы сотрудников специальной генетической лаборатории в США, так называемой Джексоновской лаборатории в штате Мэн. Это учреждение — всемирно известный центр, основанный в 1929 г. генетиком К. Литтлом. В нем поддерживаются инбредные и селектированные линии мышей, число которых в настоящее время очень велико (см. также: 8.2.4). В этой коллекции имеется много десятков мутаций, затрагивающих строение мозга и поведение.


Джексоновская лаборатория может предоставить любое число животных, имеющих нужный исследователям генотип. Такая возможность позволила ученым разных стран не только скринировать множество линий и выявить межлинейные различия поведения и нейрохимических признаков, но и послужила основой для разработки новых подходов к изучению генетики количественных признаков (метода рекомбинантных инбредных линий — см. 8.6.7.2 и метода картирования QTL — quantitative trait loci;, см. 8.6.7.3), которые используются и в генетике поведения.


В нашей стране первым генетическим исследованием признаков поведения была выполненная в 20-х годах работа М. П.Садовниковой-Кольцовой. В ней была сделана попытка селекции крыс на скорость побежки в экспериментальной установке (см. Крушинский, 1991). В последние годы жизни И. П.Павлова в Колтушах была организована лаборатория генетики высшей нервной деятельности, задачей которой должно было стать изучение генетических основ индивидуальных особенностей условнорефлекторной деятельности (т. е. типов ВНД) собак.


В этой лаборатории в конце 30-х годов Л. В.Крушинский начал исследования генетики поведения собак. По своему содержанию и методологии они практически не имеют себе равных и по сей день (см. 8.6.1).


В нашей стране генетические исследования поведения животных проводились в нескольких лабораториях, в каждой из которых разрабатывалось свое оригинальное направление. Лаборатории, созданные в 30—40-е годы М. Е. Лобашевым (1907—1971) и В. К. Федоровым (1914—1972) в Колтушах (Институт физиологии им. Павлова АН СССР), изучали проблемы генетической детерминированности свойств нервной системы, а также (совместно с кафедрой генетики ЛГУ) вопросы сравнительной генетики поведения.


Следует также упомянуть об оригинальных генетических исследованиях Р. А.Мазинг, изучавшей проявление некоторых морфологических мутаций дрозофилы ( Bar, eyeless, white и др.). Поведение мух, а именно их реакция на свет и выбор места для откладки яиц, при этих мутациях зависели от генетического фона линии, несущей мутации.


В Институте цитологии и генетики СО АН СССР (Новосибирск) под руководством Д. К.Беляева (1917—1987) в 60-е годы была начата селекционная работа по созданию доместицированной линии серебристо-черных лисиц. Отбор на спокойное и на агрессивное отношение к человеку вызвал к жизни сложнейшие перестройки эндокринной и нейромедиаторной систем организма, которые широко исследуются в настоящее время (Трут, 1987).


На биологическом факультете МГУ в лаборатории, созданной и возглавленной Л. В.Крушинским (в 1968 г. она получила название лаборатории физиологии и генетики поведения), была выведена линия крыс с высокой чувствительностью к звуку (линия Крушинского-Молодкиной — КМ) и исследована генетическая детерминированность аудиогенной эпилепсии (см. 8.6.5.1) у этих животных. В этой же лаборатории под руководством Л. В.Крушинского были проведены исследования роли генотипа в формировании сложного адаптивного поведения — способности животных к экстраполяции направления движения стимула (см. Крушинский, 1986).


Генетическое исследование поведения позволяет выяснить, в какой степени изменчивость интересующего нас признака поведения связана с изменчивостью генотипов данной группы животных, а в какой — с внешними по отношению к генотипу событиями, воздействующими на ЦНС, и следовательно, на поведение. Для этого необходимо использование так называемых генетических моделей — групп животных, состоящих из генетически идентичных (или почти идентичных) особей, имеющих определенные физиологические или биохимические особенности. С этой целью используют линии животных. Это могут быть инбредные линии (мышей и крыс), между которыми обнаружены межлинейные различия по поведению. Наряду с ними используются линии, сформированные путем селекции (искусственного отбора) на высокие и низкие значения какого-либо признака поведения.


Выявление межлинейных различий или выведение специальных линий — обычно первый этап исследования. Следующим шагом в классических исследованиях по генетике поведения бывает проведение скрещиваний животных из линий, обнаруживших контрастные значения признака.


Тестирование поведения гибридов первого поколения дает информацию о доминантном, промежуточном или рецессивном наследовании интересующего нас признака. Если данный признак определяется одним, двумя или тремя генами, то это можно определить по картине его распределения у гибридов второго поколения и потомков возвратного скрещивания. Если же в определении признака участвует большее число генов, то необходимо применять методы генетики количественных признаков (см. 8.6.6).


Современный этап развития науки обогатил генетику поведения новыми методами. Кроме упомянутых выше методов рекомбинантных инбредных линий и QTL . это создание и исследование мозаичных и химерных животных, а также трансгенных организмов (см. 8.5.3; 8.6.4.4). Очевидно, что подобные исследования можно проводить на объектах, которые хорошо изучены генетически.


Генетика поведения и нейрогенетика как ее часть сформировались в большой степени благодаря использованию плодовой мушки дрозофилы в качестве объекта исследования. Это относится и к исследованию процесса нейрогенеза, и к выявлению универсальных генных комплексов, работающих в живых системах разного уровня организации (дрожжевые грибки, амфибии, млекопитающие), названных гомеобоксом. Другой важнейшей группой работ, выполненных на дрозофиле, является исследование белка CREB . связанного с процессом формирования памяти и, по-видимому, имеющего универсальную природу (см. 8.4.3.6).


Чрезвычайно перспективным экспериментальным объектом нейрогенетики и генетики поведения считаются мыши. Помимо задач общебиологического плана, связанных с исследованием генетических вариаций в строении мозга (см. раздел 8.6.7) и их адаптивной значимости, на мышах широко изучаются нейробиологические основы процесса обучения. Исследование генетики поведения мышей дает возможность моделировать целый ряд неврологических и психических заболеваний человека, таких как эпилепсия, алкоголизм, депрессивные состояния, болезнь Альцгеймера и др. (см. 8.6.5).


8.1.1. ЗАДАЧИ ГЕНЕТИКИ ПОВЕДЕНИЯ


Основная задача генетики поведения — выяснение роли генетических факторов в определении особенностей поведения. Очевидно, что она состоит из нескольких достаточно самостоятельных проблем. Одна из них — определение относительной роли и взаимодействия генетических и средовых влияний при формировании поведения в онтогенезе. Вторая задача — исследование механизмов действия генов, определяющих формирование нервной системы. Третья задача связана с изучением механизмов реализации действия мутантных генов, затрагивающих функцию ЦНС, которые могут служить моделями заболеваний нервной системы человека. Четвертая задача — изучение генетико-популяционных механизмов формирования поведения и его изменений в процессе микроэволюции. Вторую и третью задачи нередко выделяют в направление, получившее название нейрогенетики.


Интеграция целостного, "организменного" и молекулярно-биологического подходов для создания возможно более полной картины роли генотипа в формировании мозга, в развитии его отдельных реакций и поведения в целом составляет общую задачу генетики поведения. Таким образом, две ее основные части — собственно генетика поведения и нейрогенетика дополняют друг друга, причем следует отметить, что в последнее время нейрогенетика начинает приобретать все большее значение.


Наряду с конкретными экспериментальными исследованиями, проведенными в середине и даже в начале века, истоком современной генетики поведения служит также феногенетика — направление, зародившееся в начале в 30-х годов (см. 8.2.1). Задачей феногенетики является изучение закономерности становления признака под влиянием данного набора генов и определенной констелляции средовых воздействий (Астауров, 1968).


В настоящее время генетические исследования поведения и нейрофизиологических процессов проводятся по нескольким направлениям.


Условно они подразделяются на две группы: исследование функции гена на молекулярном и физиологическом уровне с последующим анализом влияния этого гена на поведение (подход "от гена к поведению") и изучение генетической компоненты изменчивости целостного поведения с последующим более детальным анализом феноменологии на уровне отдельных хромосом и генных комплексов или же отдельных генов (подход "от поведения к гену").


Исследования первой группы проводятся по ряду направлений. Во-первых, изучаются особенности влияния генов, кодирующих белки-предшественники пептидов, ферменты, структурные белки, определяющие общие и специфические признаки нервных и глиальных клеток (рецепторные структуры и молекулы, медиаторные системы, формирование клеточных органелл и отростков — дендритов и аксонов, синапсов и др.), а также белки, связанные с функцией ЦНС как целого. Сюда относятся также исследования влияния отдельных локусов, детерминирующих взаимодействие мозга и эндокринной системы, а также генов, участвующих в синтезе веществ химической сигнализации (например, гормона откладки яиц у аплизии, феромонов), и генов, детерминирующих специфику поведения у беспозвоночных животных, в особенности у насекомых (например, исследование мутаций, влияющих на половое поведение дрозофилы — см. 8.4).


Во-вторых, это четкие и часто хорошо изученные поведенческие эффекты мутаций отдельных генов у млекопитающих. Это и мутации, мало влияющие на общую приспособленность организма в условиях содержания животных в лаборатории (их можно было бы отнести к "нейтральным"), и "вредные" неврологические мутации. Последние представляют большой практический интерес как модели генетических заболеваний нервной системы человека, а также как объект для изучения нормальных процессов развития и функции мозга (см. 8.6.4).


Поиск четких "единиц" физиологической регуляции поведения заставляет исследователей переходить ко все более простым объектам.


Сложность генетической регуляции "примитивных" реакций у низших организмов будет показана в разделе 8.3, посвященном генетике "поведения" Escherichia coli и примитивных реакций нематоды Caenorhabditis elegans и др.


Вторая группа исследований использует подход "от поведения к генам", который нельзя назвать альтернативным предыдущему (см. 8.6). Однако экспериментальные методы, используемые в таких работах, часто совсем иные, нежели при анализе работы отдельных генов. Именно в исследованиях такого рода, которые можно назвать генетикой поведения ''per se'' чрезвычайно важны выбор адекватного признака для анализа (см. 8.2) и владение набором четких правил, составляющих основу генетического анализа поведения.


8.2. Понятие признака в генетике поведения


8.2.1. КРАТКАЯ ИСТОРИЯ ВОПРОСА


В 30-е годы на основе работ Б. Л.Астаурова, П. Ф.Рокицкого, Н. В.Тимофеева-Ресовского и др. сформировалась так называемая феногенетика — направление, анализирующее пути и правила становления признака в процессе развития. Если ранее наибольшее распространение имела лишь гипотеза "один ген — один фермент", то развитие феногенетики дополнило эти представления. Были сформулированы новые положения, каждое из которых имеет солидное экспериментальное обоснование.


В этот период были установлены два общих принципа отношений между генами и признаками: 1) каждый ген влияет на все признаки в организме, хотя его влияние на некоторые из них может быть исчезающе мало; 2) любой признак организма зависит от всех генов фенотипа в целом, даже если зависимость от некоторых незаметна. Иными словами, развитие каждого признака представляет собой цепь последовательных генных взаимодействий, проявляющихся в определенных условиях среды.


Как говорилось в разделе 8.1.2, одна из задач нейрогенетики (которая представляется в то же время задачей общей биологии развития) — исследование закономерности действия генов при дифференцировке клеточных элементов ЦНС и при формировании структур мозга в целом. В ходе развития организма формируются нейрохимические особенности разных отделов мозга и медиаторная специфичность нервных клеток, а также специализированные связи между нейронами. Очевидно, что детальное описание этих событий выходит за рамки данной книги. В разделах 8.2.10 и 8.5 дан краткий очерк некоторых представлений, существующих в этой области.


Особенности проявления признаков поведения, связанные со сложностью и многоступенчатостью процессов, лежащих в их основе, а также со сложностью и разнообразием влияний внешней среды на их формирование и проявление, представлены здесь кратко. Основными источниками более подробной информации по этим вопросам могут служить книги Эрман и Парсонса (1985), Трут (1978), руководство "Физиологическая генетика и генетика поведения" (Крушинский, 1981).


8.2.2. ПЛЕЙОТРОПИЯ


Влияние генов на фенотипические признаки может быть и непосредственным, и достаточно "далеким", опосредованным. Некоторые признаки, например первичная структура белков, есть отражение последовательности нуклеотидов в данном гене. Другие, более сильно отдаленные от первичного эффекта гена признаки, как правило, находятся под влиянием значительного числа генов. Так называемые количественные признаки — рост, вес, плодовитость и т. п. а также многие признаки поведения, связанные с функцией разных отделов мозга, также связаны с функцией конкретных генов непрямым образом.


Когда признак отдален от первичного эффекта гена несколькими "ярусами" биохимических процессов, то обнаруживается влияние некоего гена не только на исследуемый признак, но и на многие другие стороны строения, функций и поведенческих реакций организма. Это явление называется плейотропией . Описано множество генов со сложными плейотропными эффектами.


Классическим примером плейотропии, который способствовал накоплению экспериментальных свидетельств влияния генотипа на поведение дрозофилы, было впервые обнаруженное А. Стертевантом (1915) и подробно описанное в 1956 г. М. Бэсток влияние мутации yellow на уровень половой активности мух (см. 8.4.3.2).


Широко известны многочисленные плейотропные эффекты мутации альбинизма, обнаруживающиеся не только у лабораторных мышей и крыс, но и у многих других видов животных и даже человека (см. 8.6.4.1) — это нарушение остроты зрения, специфические особенности морфологии зрительных путей


Исследование мозга мышей с мутацией rd (дегенерация сетчатки), проведенное американскими исследователями Ц. и Р. Ваймерами, выявило ее плейотропный эффект. Дегенерация светочувствительных элементов сетчатки — палочек — определяется геном, расположенным на 5-й хромосоме. Процесс начинается с 20-го дня жизни. Специальными экспериментами на мышах-химерах (см. 8.5.3.2) было установлено, что ген rd действует на уровне нервных элементов сетчатки, а не на уровне клеток пигментного эпителия. Анализ структур ЦНС выявил, что размер зубчатой фасции гиппокампа, а также количества гранулярных и корзинчатых клеток в этом отделе мозга у мышей с генотипом rd/rd были значительно ниже нормы. Механизм возникновения подобной аномалии пока неизвестен.


Описаны эффекты мутации гена brindled (Mo br) . которые поначалу поставили исследователей в тупик. Симтомокомплекс этой мутации заключается в аномальном снижении двигательной активности и треморе, в светлой окраске шерсти и наличии у таких животных закрученных вибрисс. Оказалось, что снижение активности таких ферментов, как дофамин-бета-гидроксилаза (ответственное за снижение локомоции), тирозиназа в меланоцитах (светлая шерсть) и лизилоксидаза в волосяных фолликулах (аномальная структура вибрисс) вызвано общим фактором — ослаблением усвоения меди в кишечнике. Это, видимо, и является первичным эффектом данной мутации. Считается, что она в какой-то степени сходна с мутацией при так называемом синдроме Менкеса у человека (см. Hay, 1985).


К плейотропным эффектам следует отнести также множественные отклонения от нормы в развитии мозга мышей при неврологических мутациях, например при мутации reeler . когда измененное в результате мутации развитие волокон радиальной глии влечет за собой нарушение миграции больших групп нейробластов (см. 8.5.4).


Типичный плейотропный эффект — это последствия фенилкетонурии у человека. Фенилкетонурия характеризуется тем, что в организме отсутствует или малоактивен фермент фенилаланингидроксилаза, превращающий фенилаланин в тирозин. Если имеющийся недостаток тирозина возмещать богатой тирозином пищей, этот дефект не будет иметь последствий для жизнедеятельности в целом. Однако при этом в крови больных фенилкетонурией уровень фенилаланина оказывается повышенным, а продукты его обмена попадают в разные органы и ткани, в том числе и в мозг, нарушая их развитие. Вторичное влияние мутантного гена у человека проявляется в задержке умственного развития и особенностях темперамента, а также в изменении пигментации волос. Считается, что эти эффекты определяются участием ферментов, синтезирующих нейромедиаторы и меланин — пигмент волосяных фолликул.


Драматическими примерами сложных плейотропных влияний одиночных генов могут служить многочисленные мутации человека. Например, синдром Леш-Нихана связан с дефектом гена, ответственного за синтез гипоксантингуанинфосфорибозилтрансферазы, что вызывает ряд тяжелых расстройств — от подагры и заболевания почек до аномального поведения. Дети, пораженные этим заболеванием, обладают сниженным интеллектом и склонны к "самоистязанию", повреждая себе (часто необратимо) губы и пальцы. Характерно, что они испытывают при этом страдания, поскольку болевая чувствительность у них не изменена (см. Эрман, Парсонс, 1984; Фогель, Мотульский, 1990)


В целом можно утверждать, что термин "плейотропия" относится к анализу эффектов генов на уровне организма и представляется сугубо описательным. Детальное исследование эффектов мутантных генов на уровне клетки, ткани и органа должно привести к выявлению конкретных путей нарушения физиологических функций, т. е. к расшифровке сущности плейотропных эффектов.


8.2.3. ИЗМЕНЧИВОСТЬ ПРИЗНАКОВ ПОВЕДЕНИЯ. ВЫБОР ПРИЗНАКА ДЛЯ АНАЛИЗА


У генетики поведения были, особенно в начальный период существования, трудности, связанные со сложностью признаков поведения, которые продолжают существовать и сейчас. Несомненно, что для успеха их генетического исследования необходимо точно сформулировать задачу работы и выбрать признак, который представляет собой естественную "единицу" той или иной формы поведения. Очевидно, что успешно отыскать такой признак можно только на основе хорошего знания физиологии, нейрофизиологии и поведения.


Следует отметить, что логика построения физиологического исследования всегда требовала отыскания "типичного" варианта того или иного феномена. Очевидно, что для генетических исследований такой подход неприемлем. Суть генетического подхода состоит в оценке размаха изменчивости признака у данного вида, популяции или группы особей и в анализе происхождения этой изменчивости. Таким образом, столь необходимое для прогресса генетики поведения участие в таких работах физиологов до недавнего времени сдерживалось из-за существования подобного "типологического" подхода к предмету. В настоящее время данная проблема уже не стоит столь остро (см. 6.4).


В период накопления фактов в генетике поведения внимание исследователей привлекали и разные виды животных, и разные признаки: предрасположенность к судорогам, общая возбудимость, локомоторная активность, ориентировочно-исследовательские реакции, разные аспекты репродуктивного поведения, классические и инструментальные условные реакции, реактивность к фармакологическим веществам.


Опыт, накопленный в первый период развития генетики поведения, можно суммировать следующим образом. Для исследования роли генотипа в формировании поведения следует выбирать такие признаки, которые легко поддаются количественному учету (например, четкие видоспецифические движения), либо такие, которые легко измерить по степени выраженности (например, уровень локомоторной активности, измеряемый по длине пройденного животным пути за фиксированное время опыта).


Многие признаки поведения сильно зависят также от ряда внешних по отношению к нервной системе факторов, например от сезона года и/или от гормонального фона. Это вызывает дополнительные трудности при проведении генетических исследований.


Основу и первый этап генетического исследования признаков поведения и/или физиологических признаков составляет оценка их генетической изменчивости. Очевидно, что если речь не идет о группе инбредных, т. е. генетически идентичных друг другу животных, то генетический компонент изменчивости признаков поведения всегда присутствует, составляя большую или меньшую долю фенотипической изменчивости.


Проблема определения объекта исследования в генетике поведения решается, как правило, выбором либо группы инбредных линий для сравнения, либо проведением селекционного эксперимента на высокие и низкие значения этого признака. Какую именно генетическую модель необходимо выбрать, определяется конкретными целями исследования и спецификой изучаемого фенотипического признака.


Признаки организма могут варьировать, обнаруживая фенотипическую изменчивость в пределах нормы реакции, размах которой определен генотипом. Генетическая изменчивость особей популяции обнаруживается по огромному числу признаков, в число которых входят и альтернативные (наличие — отсутствие признака), и так называемые количественные, когда величина признака определяется большим числом пар аллелей, вклад каждой из которых определить достаточно трудно. Использование методов рекомбинантных инбредных линий и QTL (см. 8.6.6) дает по меньшей мере теоретическую возможность локализации целого ряда генов, суммарный эффект которых определяет данный количественный признак.


Помимо изменчивости в пределах нормы реакции, характерной для данного генотипа, а также помимо генетической изменчивости, связанной с гетерогенностью аллельного состава данной популяции, для признаков поведения характерна еще одна, специфическая форма изменчивости, которая не может быть прямо отнесена ни к первой, ни ко второй категории. Речь идет об изменчивости признаков поведения животных, связанной с воздействием индивидуального опыта, т. е. с разными формами сенситизации, привыкания, обучения, формирования представлений и т. д. Иными словами это то, что составляет специфику мозга как структуры, обеспечивающей научение, и что тоже является предметом внимания генетики поведения.


Напомним, что в соответствии с классическими представлениями этологии подобную пластичность можно обнаружить при выполнении животным поисковой фазы поведения, тогда как собственно инстинктивные акты поведения — фиксированные комплексы действий (ФКД, см. 3.3), входящие в завершающий акт, пластичностью практически не обладают. Каждый из ФКД может служить достаточно дискретной и четкой "единицей" для анализа закономерностей его генетического контроля (см. также: 8.2.5).


8.2.4. ИСПОЛЬЗОВАНИЕ ИНБРЕДНЫХ ЛИНИЙ В ГЕНЕТИКЕ ПОВЕДЕНИЯ


Селектированные и инбредные линии представляют собой основной материал для работы в области генетики поведения. Селекция мышей и крыс на степень выраженности ряда признаков поведения была успешной. В настоящее время осуществлены селекционные программы, которые охватили практически весь диапазон признаков поведения, показавших генетическую изменчивость, — от скорости проведения нервного возбуждения в нервно-мышечном синапсе (см. Лопатина, Пономаренко, 1987) до высокой и низкой способности к обучению (см. 8.6). В то же время с помощью селекции формируются линии, которые состоят из животных, сходных по выраженности исследуемого признака и иногда ряда других признаков, но не обладающих генетической однородностью. Это затрудняет использование их в целях идентификации генов, влияющих на данный признак.


В ряде случаев удается провести работу по выведению инбредных селектированных линий, т. е. полностью гомозиготных животных с контрастными в случае двух линий величинами интересующего нас признака. Инбридинг (близкородственное скрещивание) начинают после того, как получены неперекрывающиеся межлинейные различия по интересующему нас признаку. Таких линий немного. В качестве примера можно привести инбредные линии мышей Short - и Long sleep . у которых после гипногенной дозы этанола развивается либо короткий, либо длинный период сна. Основную же массу составляют инбредные линии мышей и крыс, выведенные ранее, до начала активных исследований в области генетики поведения. Такие линии были необходимы для исследований по иммунологии, гистосовместимости, онкологии и др, (см, также: Бландова и др. 1983).


Инбредные линии мышей и крыс получаются при размножении животных путем братско-сестринского скрещивания в течение примерно двадцати поколений, Полезные свойства этих линий позволяют использовать их для генетического анализа и выявления локусов, влияющих на поведение. Образно говоря, инбредная линия представляет собой неумирающий клон, состоящий из генетически идентичных друг другу особей.


Ниже перечислены основные свойства, отличающие инбредные линии от генетически гетерогенных аутбредных (Wimer, 1992).


1. Изогенность. Все животные инбредной линии генетически идентичны друг другу практически по всем локусам. Это означает, что для получения генетического "профиля" линии соответствующее определение можно сделать на одном животном. Для начала дочерней колонии инбредной линии можно использовать только одну пару.


2. Гомозиготность. Инбредные линии гомозиготны практически по всем локусам. У них нет никаких "скрытых" генов, которые не выявлялись бы при размножении линии "в себе". Естественно, что никаких изменений генетического состава, связанных с дрейфом генов или отбором, в инбредной линии произойти не может.


3. Фенотипическое подобие. Поскольку инбредная линия не может иметь генетических отклонений, фенотипическое единообразие таких животных по многим признакам также оказывается более высоким, чем в аутбредных стоках. Это относится в первую очередь к признакам с моногенным или олигогенным (т. е. когда задействовано малое число генов) определением. Так, например, после введения гексобарбитала мышам линии Balb/c их сон продолжается в среднем 41±2 мин, а у животных аутбредного стока Swiss примерно столько же — 43±15 мин, но разброс величин у последних был значительно большим. Если предполагается оценить изменение длительности сна в ответ на какое-либо воздействие, то, согласно простым расчетам, для получения достоверного результата достаточно использовать лишь 15 мышей линии BALB/c . но 290 аутбредных мышей Swiss.


Инбредные линии могут иметь повышенную чувствительность к средовым воздействиям и, следовательно, фенотипическое сходство особей по признакам поведения, имеющим полигенную природу, может нарушаться (см. п. 7).


4. "Индивидуальность" линии. Каждая инбредная линия генетически уникальна; ее поведенческий и неповеденческий фенотипы всегда будут непохожи на фенотипы любой другой линии. Это означает, что практически для всех проявлений поведения можно обнаружить межлинейные различия. Из этого следует очень важный вывод о том, что выявление различий между линиями по поведению требует в дальнейшем исследования их физиологических и биохимических причин.


5. Долговременная стабильность. Инбредные линии остаются генетически стабильными в течение больших отрезков времени. Примером может служить постоянство генетического состава двух родственных сублиний — CS7BL/6 и C57BL/10 . которые, хотя и ведутся независимо уже более 50 лет, но остаются, как и в начале, на 97% генетически сходными.


Нарушение генетической стабильности инбредной линии может произойти в результате одной из трех причин — наличия остаточной гетерозиготности, новых мутаций и генетического "заражения". Остаточная гетерозиготность есть следствие того, что инбридинг даже в течение многих поколений по какой-то причине не может привести к полной гомозиготности. Возникновение мутаций — событие достаточно редкое, но есть случаи, когда появлялись мутации, влияющие и на поведение.


6. Возможность идентификации. Поскольку каждая линия имеет свой генетический "профиль", не составляет большого труда проверить принадлежность животного к этой линии. Это особенно важно при подозрении на засорение линии посторонним генетическим материалом. Подобное "заражение" линии может, к сожалению, случаться при ошибках или небрежности в разведении.


7. Чувствительность. Гомозиготность особей инбредной линии считается причиной того, что эти животные часто оказываются более чувствительными к внешним воздействиям. Инбредные животные гомозиготны в том числе и по аллелям, которые не обязательно способствуют повышению их жизнеспособности, а нередко, наоборот, ведут к ее снижению. Противоположное явление, а именно малую чувствительность гибридов первого поколения к средовым влияниям, объясняют наличием генетического буфера, т. е. формированием гетерозиготного организма, у которого каждый аллель, вызывающий снижение жизнеспособности, с большой вероятностью имеет "парой" аллель другого происхождения, который такого действия не оказывает.


Отсутствие подобных "буферных" свойств у гомозиготного генотипа может быть причиной слабой защищенности инбредного организма от внешних, нарушающих развитие влияний. Это же явление лежит в основе иногда обнаруживаемой повышенной чувствительности животных инбредных линий к средовым воздействиям, что может приводить к появлению фенотипических различий между инбредными животными одной линии, противодействуя тем самым свойству фенотипического подобия, о котором говорилось выше (п. 3).


8. Использование в разных странах. Поскольку инбредные линии обладают свойствами изогенности, гомозиготности и возможностью быть идентифицированными, их можно использовать в лабораториях разных стран без опасения каких-либо генетических изменений в них, связанных с малым числом основателей колонии (как это имеет место при работе с аутбредными стоками, например селектированными линиями).


9. Использование данных прошлых лет. Данные по инбредным линиям в силу их генетической стабильности можно сравнивать с результатами, полученными на тех же линиях, но ранее. Это облегчает планирование и проведение новых исследований.


8.2.5. "ИЗМЕНЧИВОСТЬ" ФИКСИРОВАННЫХ КОМПЛЕКСОВ ДЕЙСТВИЙ И МИКРОЭВОЛЮЦИОННЫЕ ИЗМЕНЕНИЯ ПОВЕДЕНИЯ


Сочетание слов "изменчивость ФКД" находится в видимом противоречии с тем, что уже говорилось выше о стабильном характере простейших элементов инстинктивного поведения. Как разрешается такое противоречие? Несмотря на то что в целях описания и анализа поведение удобно рассматривать как состоящее из отдельных "форм" и/или актов, в реальности оно представляет собой непрерывный процесс, "поток", течение которого обозначается определенными конкретными актами.


Из этологического анализа, а также из данных генетико-популяционных исследований инстинктивного поведения следует, что природная генетическая изменчивость затрагивает не "рисунок", или паттерн (pattern), ФКД, а преимущественно частоту его выполнения и пороги их активации, т. е. их пространственно-временные характеристики. Первым внимание к этой проблеме привлек А. Меннинг (см. Manning, 1967).


Таким образом, частота выполнения поведенческих актов (большая часть из которых — типичные ФКД), а также пороги их провокации в тех или иных условиях характеризуются высоким уровнем фенотипической и генотипической изменчивости поведения.


Иллюстрацией этого положения может служить изменчивость ФКД, входящих в репертуар поведения ухаживания самца дрозофилы (рис. 8.1).


Рис.8.1. Стадии ритуала ухаживания у дрозофилы (с черным кончиком брюшка — самец): а — ориентация; б — отставление крыла и вибрация; в — "облизывание" гениталий; г — садка; д — копуляция; е — невосприимчивая самка отталкивает самца (оттягивает яйцеклад, поворачивая конец брюшка вбок) Все стадии обнаруживают межвидовую и внутривидовую изменчивость по продолжительности, а стадия вибрации характеризуется и видоспецифическим "рисунком" брачной песни


Этот ритуал условно подразделяют на 4 стадии: ориентация, вибрация, лизание и копуляция. При мутациях может изменяться как длительность, так и интенсивность данного ФКД. Межвидовые различия в поведении близкородственных видов, как правило, также связаны с подобной изменчивостью поведения.


У млекопитающих (мышей, крыс, собак и др. видов) значительную часть межлинейных и межвидовых различий в поведении можно свести к различиям в частоте выполнения видоспецифических ФКД. Это особенно четко проявляется в поведении линейных лабораторных грызунов, селектированных на высокие и низкие показатели признаков поведения. В качестве примеров можно привести различия в интенсивности проявления материнского поведения — подтаскивание детенышей к гнезду (Hurniket al. 1973), число вертикальных стоек (исследовательское поведение) (van Abeelen, 1974), проявления агрессивности (например, вращение хвостом). Множество примеров межлинейных различий содержится в любом обзоре по генетике поведения (Меннинг, 1982; Эрман, Парсонс, 1984). У межвидовых гибридов, полученных от видов, в естественных условиях не скрещивающихся, проявления ФКД имеют ряд особенностей.


Одно из первых подробных исследований гибридных форм провел К. Лоренц. У межвидовых гибридов уток выявляются такие ФКД, которых практически не бывает в репертуаре обеих родительских форм. Можно полагать, что генотип данного вида позволяет обеспечить физиологические механизмы таких стереотипных действий, но в силу каких-то причин они не выявляются фенотипически.


В 1975 г. внимание к этой проблеме привлек П. Лейхаузен (Leyhausen, 1975) при исследовании закономерностей проявления некоторых видоспецифических особенностей типичного ФКД кошачьих — "смертельного укуса" (см. 7.5.3). Конкретной причиной, почему не все ФКД, на которые "способна" ЦНС данного вида, реализуются в репертуаре его поведения, могут быть различия в физиологических порогах их активации. В пользу этого предположения говорят исследования А. Хааса, посвященные поведению шмелей, о которых рассказывает в своей книге Лейхаузен.


Хаас наблюдал, как эти насекомые отыскивают свои гнезда. Изменяя расположение гнезд, он вызывал у шмелей состояние повышенного возбуждения и "стресса". Их поведение включало стереотипные элементы, свойственные другим видам шмелей того же рода. Такая потенциальная готовность к выполнению ФКД (в норме не характерных для вида), позволила предположить, что каждый вид изначально обладает всем "родовым" репертуаром поведенческих актов, но в обычных ситуациях реализует только определенную его часть. Экстренные ситуации, приводящие к высокому уровню активации ЦНС, могут выявить и остальные элементы "родового стереотипа".


Дезорганизацию гнездостроительного поведения наблюдал У. Дилгер (см. Эрман и Парсонс, 1985) в эксперименте с гибридными особями попугаев-неразлучников. Они были получены от скрещивания таких двух видов, которые при постройке гнезда совершали различные действия: один из видов переносил гнездовой материал (в данном случае полоски бумаги) в клюве, другой — между перьями хвоста. Иными словами, два скрещивавшихся вида различались по ФКД при осуществлении врожденного поведенческого акта.


Гибридные особи в первый сезон размножения оказались не в состоянии построить гнездо, поскольку не могли справиться до конца с фиксацией гнездового материала. Они брали полоски бумаги в клюв (как один из родителей), затем пытались засунуть их между перьями, но делали это не так умело, как второй родитель. В результате постройка гнезда у этих птиц стала налаживаться только в последующие сезоны размножения, но их действия оставались нечеткими, и гнезда получались плохие.


Рис.8.2. Некоординированные действия неразлучника-гибрида по фиксации гнездового материала


Подобный феномен описан и в брачном поведении межвидовых гибридов рыбок-меченосцев. Самцы-гибриды первого поколения от сжрещивания Xiphophorus helleri и X. montezumae cortezi в состоянии высокого полового возбуждения демонстрируют последовательность действий, характерную для самцов X. helleri . тогда как при меньшем уровне возбуждения их поведение похоже на X. montezumae .


Все описанные и сходные с ними наблюдения (например, рисунок песни у гибридных сверчков — рис. 8.3) остаются пока вне поля зрения нейрогенетиков и нейроэтологов, однако можно полагать, что большинство их следует объяснять физиологической модуляцией порогов провокации видоспецифических ФКД.


Рис.8.3. Рисунок песни у сверчков разных групп: а — Т. oceanicus . г — Т. commodus и двух групп их реципрокных гибридов — б и в


А. Меннинг еще в 1967 г. (Manning, 1967), анализируя генетические различия в половом поведении дрозофилы, высказал предположение, что генетическая изменчивость порогов и частоты выполнения ФКД может быть основой процесса микроэволюционных изменений поведения.


В таком случае возможно, что одним из механизмов формирования индивидуальных различий в поведении, связанных с генотипическими различиями, является разная "легкость" провокации тех или иных ФКД.


Изменчивость порогов проявления видоспецифических движений может зависеть от уровня возбудимости отдельных структур мозга и/или его отдельных медиаторных систем. Модуляция порогов ФКД, по всей видимости, происходит и при действии фармакологических веществ, изменяющих поведение животных. Это дает основание надеяться, что анализ роли генотипа в эффектах фармакологических препаратов на уровне целого организма перспективно рассмотреть еще и с этой точки зрения. Возможно, что микроэволюционные изменения поведения, описанные в многочисленных наблюдениях (Панов, 1978), действительно реализуются на основе динамических изменений в порогах проявления ФКД.


В работе Л. В. Крушинского (подробнее см. 8.6.1) по наследованию оборонительных реакций у собак впервые было показано, что уровень возбудимости ЦНС влияет на экспрессивность и пенетрантность отдельных поведенческих реакций (Крушинский, 1991).


8.2.6. ИЗМЕНЧИВОСТЬ ПОВЕДЕНИЯ, СВЯЗАННАЯ С РАЗЛИЧНОЙ ЭКСПРЕССИВНОСТЬЮ ПРИЗНАКОВ


Экспрессивностью называется степень фенотипического проявления эффектов аллеля определенного гена у разных генетически сходных между собой особой» В основу различий экспрессивности могут лежать многие причины, в частности влияние средовых факторов или генетического фона. Если экспрессивность очень изменчива (вплоть до отсутствия проявления признака у отдельных особей), вводится дополнительная характеристика проявления действия гена — пенетрантность (частота проявления аллеля определенного гена у разных особей группы родственных организмов).


Примером изменчивости признаков поведения, которые связаны с экспрессивностью и пенетрантностью, могут быть количественные вариации в проявлении ФКД исследовательской активности, пищевого поведения, в интенсивности репродуктивного поведения, которые можно наблюдать у животных идентичных генотипов, например у мышей и крыс инбредных линий.


Внутрилинейная изменчивость признаков поведения определяется очень многими факторами. Один из них — это влияние соседства сородичей в жилой клетке, что редко учитывается исследователями. Как известно, лабораторные мыши и крысы относятся к видам, живущим в сообществах. Изоляция такого животного (в особенности самца) вызывает мощные изменения нейрохимических процессов в организме, а также изменения в поведении. Содержание животных в группе выявляет различия, определяющиеся положением особи во внутригрупповой иерархии. Это лишь один из примеров проявления изменчивости поведения особей с идентичными генотипами. Причины этого явления необходимо знать для оценки роли генотипа в формировании признаков поведения.


Еще один пример — различия в экспрессивности такого признака, как агрессивность. Американский исследователь Фом Сааль с сотрудниками показали, что к моменту рождения у эмбрионов мыши мужского пола уровень тестостерона в крови втрое выше, чем у самок, что связано со скачкообразным началом функционирования у них семенников. В проведенном эксперименте эмбрионов непосредственно перед родами извлекали методом кесарева сечения. При этом определялось относительное расположение в матке каждого из них и устанавливалось, кто были "соседями" данного плода (рис.8.4).


Напомним, что у грызунов двурогая матка, и эмбрионы в ней располагаются линейно. Выросшие взрослые самцы, соседями которых в матке также были самцы, оказались более агрессивными, чем те, которые в эмбриональном периоде располагались рядом с самками. В дальнейшем эти исследователи сравнили поведение и ряд морфологических характеристик самок, имевших соседями по матке двух самцов, с самками, соседками которых были две самки.


Puc.8.4. Расположение эмбрионов в двурогой матке грызуна: а — интактная матка; б — эмбрионы, извлеченные из нее; 1 — плацента; 2 — эмбрион, 3 — пуповина


У первых отмечались некоторые черты "маскулинизации" поведения и повышенный уровень тестостерона в крови. Несмотря на то, что у каждого из эмбрионов имеется собственная плацента, считается вполне вероятным влияние на данный плод состава крови "соседа" по матке. Именно этим, точнее повышенным пренатальным уровнем тестостерона в крови эмбрионов-самок и объясняют изменчивость уровня агрессивности у взрослых животных. Таким образом, это еще один пример того, что животные с одинаковым генотипом могут отличаться вариабельностью поведения, причина которой кроется исключительно в средовых, т. е. внешних по отношению к геному факторах.


8.2.7. ПРИЧИНЫ И СЛЕДСТВИЯ ПРИ АНАЛИЗЕ ВЛИЯНИЯ ОТДЕЛЬНЫХ ГЕНОВ


Нередко оказывается, что в поведении и/или в неврологическом статусе организма-носителя мутации имеются многочисленные отклонения, которые могут наводить на мысль о существовании причинных связей между ними. Однако при выявлении нескольких эффектов данного мутантного гена зачастую высказывают мнение о существовании между ними причинно-следственной связи. Чтобы избежать при этом возможных ошибок, плейотропные эффекты мутации необходимо исследовать всесторонне.


Как уже говорилось выше (см. 8.2.2), у лабораторной мыши при мутации brindled . локализованной в X-хромосоме, отмечаются "вьющиеся" вибриссы, "ослабленная" окраска шерсти, тремор, а также ряд других аномалий (Hay, 1982). Эти проявления мутантного гена являются следствием нарушений в усвоении меди — микроэлемента, необходимого для многих биохимических реакций. Введение в пищу новорожденным животным соединений меди практически компенсирует выявленные аномалии.


Существует несколько десятков форм наследственных заболеваний человека, вызванных нарушениями обмена, в число симптомов которых входят также неврологические и психические отклонения (см. Эрман, Парсонс, 1984). Знание "метаболических" причин этих заболеваний позволяет более рационально подходить к поиску путей их коррекции.


8.2.8. ВЛИЯНИЕ ВНЕШНИХ УСЛОВИЙ НА ИЗМЕНЧИВОСТЬ ПРИЗНАКА. МАТЕРИНСКИЙ ЭФФЕКТ


Влияние внешних условий на изменчивость поведения исследуется почти исключительно на инбредных линиях животных, главным образом на мышах. Наряду с факторами внешней среды и генотипом у млекопитающих в формировании признака участвует еще один важнейший параметр — так называемый материнский эффект. Под этим термином понимают пре - и постнатальные влияния материнского организма, которые в свою очередь также зависят от генотипа. Эти влияния должны учитываться как еще один потенциальный источник изменчивости поведения взрослого животного.


Наиболее простые примеры влияния материнского организма на физиологические реакции и поведение потомства — это эффекты различных пренатальных воздействий на самку (стресс, фармакологические агенты), выраженность которых может зависеть от ее генотипа.


Экспериментально показано, что при соблюдении стандартных условий выращивания как матерей, так и их потомства, физиологические реакции и поведение последнего зависят от типа влияний "материнской среды". Эта влияния могут существенно сказываться не только на внутрилинейной, но и на межлинейной изменчивости. Иными словами, влияние иматеринской среды" инбредной линии А на формирование признака может быть иным, чем влияние на этот признак "материнской среды", свойственной генотипу B .


Влияние материнской среды складывается из 3 компонентов: цитоплазматического, внутриутробного и постнатального. Цитоплазматический компонент (или материнский эффект per se > обнаруживается не только у млекопитающих, но и у тех животных, развитие которых проходит вне материнского организма. Он заключается в том, что яйцеклетка и сперматозоид при слиянии привносят разные количества цитоплазмы, причем белки, синтезируемые на основе материнских мРНК, обнаруживаются в зародыше и после начала дробления. Кроме того, цитоплазма яйцеклетки передает зародышу значительно большее количество митохондриальной ДНК, чем цитоплазма спермия. Это означает, что цитоплазматические влияния могут иметь и генетическую природу.


Внутриутробный компонент материнского эффекта определяется генотипом матери, а также специфическими воздействиями, которые испытывает ее организм. Самки разного генотипа, даже выращенные и содержащиеся в одинаковых условиях, создают потомству разную "материнскую среду", что может повлечь за собой различия в фенотипе потомства.


Постнатальный компонент связан с тем, что детеныши млекопитающих, в особенности незрелорождающихся видов, к которым принадлежат мышь и крыса, длительное время зависят от материнской заботы, которая включает вылизывание потомства, поддержание чистоты и тепла в гнезде, количество и состав материнского молока, а также комплексное воздействие обеих групп факторов одновременно.


Разработаны экспериментальные приемы, с помощью которых можно оценить относительный вклад каждого из этих компонентов в фенотипическую изменчивость признака поведения. В основе столь развернутого методического подхода к проблеме лежат работы французской исследовательницы М. Карлье (Carlier et al. 1992).


Сравнивается выраженность исследуемого признака у следующих групп животных:


1) реципрокных гибридов первого поколения;


2) животных, воспитанных матерями разных генотипов (перекрестное вскармливание);


3) животных, выращенных из эмбрионов, пересаженных в матку самки либо своего, либо другого генотипа;


4) животных, которые развились из яйцеклеток, созревших в яичниках, пересаженных в организм самки другого генотипа.


Подобная экспериментальная процедура представляется громоздкой, формальной и кажется даже необязательной. В то же время знание возможных источников влияния на фенотип позволяет оперировать понятием "признак поведения" с большей уверенностью, а также оценивать разные компоненты изменчивости с большей точностью, чем при игнорировании таких эффектов. Хотя бы частичное применение перечисленных подходов, несомненно, важно в случаях, когда анализируют влияние генотипа на формирование мозга и поведения млекопитающих.


9.2.9. НЕКОТОРЫЕ ЭКСПЕРИМЕНТАЛЬНЫЕ СТРАТЕГИИ ПРИ ИЗУЧЕНИИ ГЕНЕТИЧЕСКОГО КОНТРОЛЯ НОРМАЛЬНОГО ПОВЕДЕНИЯ


Успешность вьщепения "единиц" для анализа генетического контроля поведения требует выполнения следующих общих эмпирических правил исследования.


1. По возможности необходимо проводить повторные замеры признака с целью уменьшения ошибки, связанной с индивидуальной изменчивостью, разумеется, если такое повторение не влияет на выполнение теста.


2. Наблюдения должны быть длительными. Например, при оценке исследовательской активности в установке "открытое поле" автоматическая регистрация параметров поведения позволяет удлинить период наблюдения, увеличив тем самым точность снимаемых показателей.


3. Желательно одновременно регистрировать возможно большее число признаков поведения, что позволяет использовать современные методы оценки данных, выявляя неочевидные коррелятивные связи. Это часто способствует выявлению не только генетической, но и физиологической "архитектуры" признака.


4. Следует использовать автоматические системы регистрации поведения и унифицировать условия манипуляции с ними. Важно быть уверенным в отсутствии явных и скрытых инфекций у подопытных животных, для чего нужна их специальная подготовка к эксперименту, задача которой — устранение патогенных факторов.


5. При исследовании реакций животных на введение фармаколо-гаческих агентов рекомендуется использовать не одну, а ряд дозировок, что позволит более полно оценить чувствительность животных разных генотипов.


8.2.10. ПРОБЛЕМА "ГЕНОТИП - СРЕДА"


Что важнее для организма — генотип или воздействия среды? Эта проблема — соотношение врожденного и приобретенного в поведении — затрагивалась в главе 7. В настоящее время подобного вопроса практически никто не задает: сформулирована и "работает" современная эпигенетическая концепция (Рэфф, Кофмен, 1988; см. также: 8.5).


В оценке соотношения генотипа и среды для формирования поведения наиболее важным является определение степени лабильности или, наоборот, ригидности любого изучаемого признака поведения. В этом смысле и полемика "nature-nurture", и ранние эпигенетические представления (см. Дьюсбери, 1981) имеют только исторический интерес. Напомним, что в главе 7 (см. 7.2) мы дали краткое изложение того, как классическая этология решает проблему соотношения врожденного и приобретенного.


Как следует из современных представлений об относительной роли генотипа и средовых условий в формировании признака (см. 8.5), поведение животного формируется при взаимодействии продуктов экспрессии генов (т. е. генотипа) со средой, которая в свою очередь порождается работой генов на предшествующей стадии и констелляцией внешних условий. Различный "удельный вес" вклада генотипа и среды в формирование признаков поведения зависит от типа генетической программы (см. 8.5). Нужно также помнить, что поисковый компонент инстинктивного акта включает в себя значительное число пластичных, модифицируемых реакций, тогда как завершающий акт жестко детерминирован и лишь изредка обнаруживает изменчивость.


Разные уровни "пластичности" или "ригидности" одной и той же формы поведения иногда встречаются у животных близких видов. По-видимому, это может определяться особенностями их генотипов, точнее, предысторией микроэволюционного развития анализируемой формы поведения. Речь идет о том, какое давление отбора испытывал набор признаков данного вида или популяции в связи с экологическими особенностями конкретной среды обитания.


Примером, иллюстрирующим это положение, могут служить особенности пищевого поведения разных подвидов оленьей мыши (Peromyscus), описанные американским исследователем Дж. Кингом (King, 1977). Он анализировал пластичность пищевого поведения у двух подвидов P. maniculatus — северной (P. m.borealis) и южной (P. m.blandus) формы. Места обитания обеих форм характеризуются сухостью климата и большими колебаниями температуры, но в полупустыне, где живет P. m.blandus . растительность разнообразнее, и существует много животных, составляющих конкуренцию за пищу. Было показано, что P. m.blandus в значительной степени специализируется на питании определенными видами растений, а набор поведенческих актов, которые эти зверьки используют при кормлении, также ограничен. В то же время поведение P. m.borealis более пластично, что диктуется условиями обитания этой формы. Эксперименты показали, что процедура "хэндлинга" (взятия детеныша в руки), вызывающая умеренный неонатальный стресс, усиливает выявленные различия в поведении.


Последний пример иллюстрирует общее явление различия в реакциях на внешние воздействия у носителей разных генотипов.


Таким образом, поведение как объект исследования генетики представляется крайне сложным. Путь "от гена к признаку", который бывает достаточно короток у примитивных организмов, оказывается сложным и многоступенчатым при формировании нервной системы и поведения. Оценка этого пути у животных, организм которых состоит из одной клетки, а также у животных с относительно просто устроенной нервной системой, вносит некоторую упорядоченность в наши знания о генетическом контроле функций нервной системы.


8.3. Генетика поведения "простых" объектов


В случае очень многих мутаций экспрессия аномального гена прерывает эмбриогенез, и зародыш гибнет. Однако в ряде случаев оказывается возможным реконструировать функцию нормального аллеля такого гена. Если удастся выделить мутации нескольких генов, экспрессирующихся на последовательных стадиях развития, то это может дать достаточно полную картину развития нервной системы. Подробная информация такого рода уже известна, она получена на интереснейшем генетическом объекте — микроскопической (2—3 мм) почвенной нематоде Caenorhabditis elegans (Кайданов, Лучникова, 1981; Rankin, Beck, 1992).


То, что удается узнать о генетическом контроле развития нервной системы и поведения, а также о генетическом контроле пластичности поведения у относительно простых объектов, делает, как мы надеемся, более понятной роль генотипа в формировании поведения насекомых и млекопитающих. Ниже приведены некоторые сведения по генетическому контролю физиологических реакций и "поведения" у бактерий, инфузорий и C. elegans .


8.3.1. КИШЕЧНАЯ ПАЛОЧКА


Разумеется, можно лишь весьма условно говорить о наличии "поведения" у бактерии. Очевидно, что движение бактерии как ответная реакция на градиент химических веществ — аттрактантов и репеллентов — является простейшим поведенческим актом, контролируемым генетически. Если жгутики — "органы движения" бактерии — вращаются в направлении "против часовой стрелки", они собираются в единый пучок, благодаря чему она совершает плавное поступательное движение. Если же направление вращения жгутиков сменяется на "по часовой стрелке", то пучок рассыпается, бактерия "спотыкается", останавливается и меняет направление движения.


Наличие рецепторов химических веществ позволяет бактериальной клетке, этому одноклеточному организму, получать информацию об их концентрации. В положительном градиенте привлекающих или отрицательном — неприятных веществ она движется достаточно плавно, практически не останавливаясь.


Таким образом, в репертуар "поведения" клетки-организма входят: возможность узнавания стимула, способность к обработке информации о его параметрах, формирование ответной реакции. Был описан целый ряд мутаций Escherichia соli . при которых перечисленные выше реакции нарушались. Условно их подразделяют на следующие категории:


а) нарушение рецепции (т. е. восприятия сигналов от аттрактантов или репеллентов); вещества, сходные по строению (сахара, аминокислоты) действуют на свои специфические рецепторы, мутации которых независимы друг от друга;


б) нарушение передачи сигнала от одного или более специфических рецепторов к жгутикам;


в) мутации, при которых жгутики способны к движению только в направлении "по часовой стрелке", что ведет к "спотыканиям"; реакции на химические вещества сохраняются, но при значительно более высоких концентрациях, чем в норме;


г) мутации, при которых жгутики способны к движению только "против часовой стрелки", и клетка, следовательно, может двигаться только по прямой;


д) нарушение работы жгутиков или их способности к вращению.


Аналитические исследования, проведенные в 70—80-е годы, показали, что на этом объекте можно исследовать наиболее примитивные формы адаптации и фиксации предшествующего опыта, а также влияния условий окружающей среды на "поведение" клеток. Подробнее эти вопросы изложены Л. Эрман и П. Парсонсом (1984).


8.3.2. ИНФУЗОРИИ


Простейшие, и в частности инфузории, — это перспективный объект для исследования генетики наиболее примитивных реакций. Эти организмы крупнее и неизмеримо сложнее бактерий. В качестве генетического объекта обычно использовались инфузории рода Paramecium, в частности один из наиболее крупных видов — P. aurelium .


Инфузории могут размножаться как бесполым (митотическим делением), так и половым путем. Половое размножение — конъюгация — обеспечивает генетическую изменчивость популяции, тогда как аутогамия — присущий простейшим способ самооплодотворения — позволяет получать полностью гомозиготных особей уже во втором поколении.


Движение инфузории осуществляется с помощью ресничек, покрывающих всю поверхность тела. Движение ресничек координируется общим физиологическим механизмом, связанным с возбудимой мембраной.


Мутации, выявленные у инфузории, влияют главным образом на характер движения. Особи "дикого типа" в норме перемещаются вперед короткими "проплывами", которые прерываются поворотами на 90 o. Такие повороты рассматриваются как проявление спонтанных реакций избегания.


Генетические нарушения — мутации — выявляются именно в характере движений этих животных (рис. 8.5). При рецессивной мутации fast-2 инфузория очень быстро перемещается, совершая при этом большое число поворотов. Группа мутаций pawn (3 локуса, 62 мутации) характеризуется полным отсутствием реакции избегания, и клетка может двигаться только вперед (как пешка в шахматах). При paranoiac аномально усилены реакции избегания. Анализ физиологических процессов показал, что эти мутации нарушают нормальную функцию мембраны и почти не влияют на реснички. Существуют данные об аномальных электрофизиологических реакциях, соответствующих нарушениям разных типов.


Рис.8.5. Фотография движения инфузории Раrаmесium . пройденный путь занял примерно 9 сек.


а — инфузория "дикого типа": видны спонтанные "реакции избегания" в виде изломов траектории; б — мутация fast-1 . в — мутация pawn — пешка; г — paranoiac, д — sluggish — вялые животные


Сложность строения этой группы организмов, в особенности инфузорий, у которых функции целого организма осуществляются в пределах одной клетки, не позволяет считать их удобным объектом для исследования мутаций, влияющих на поведение. Однако они могут быть использованы для оценки эффектов фармакологических агентов.


8.3.3. НЕМАТОДЫ


Свободно живущая почвенная нематода Caenorhabditis elegans была выбрана в качестве объекта исследования С. Бреннером в начале 70-х годов (рис. 8.6, а). Длина этого червя составляет около 1 мм, его репродуктивный цикл длится 3,5 суток. C. elegans — гермафродит, размножается самооплодотворением, откладывает до 300 яиц. Иногда в потомстве появляются особи только с мужскими половыми органами, которые спариваются с гермафродитами. Этот тип размножения дает дополнительные возможности для генетических исследований. У этого вида в гаплоидном наборе 5 аутосом и X-хромосома. Построена почти полная карта генома C. elegans. По степени сложности строения тела и физиологических реакций эта нематода занимает промежуточное положение между Е. coli и дрозофилой. Геном C. elegans состоит из 8*10^6(?) пар оснований, что в 20 раз больше, чем у E. coli . и примерно в 2 раза меньше, чем у дрозофилы. Около 83% генома нематоды составляют уникальные последовательности.


Рис.8.6. Относительно новый генетический объект: микроскопическая почвенная нематода Caenorhabditis elegans . а — схема анатомии червя: 1 — глотка; 2 — кишка; 3 — яйца; 4 — влагалище; 5 — анальное отверстие.


б — следы на питательной среде агар-агаре, сделанные нематодой дикого типа с нормальными движениями (слева) и двумя нематодами с мутацией bent—head . влияющей и на скорость движения, и на координацию мышц туловища


Для нематод характерна эвтелия, т. е. наличие в организме фиксированного числа клеток. Тело C. elegans состоит из 1000 клеток, причем 302 (по другим данным 350) из них — это нейроны. Генетическое, анатомическое и физиологическое исследование этого объекта, предпринятое С. Бреннером, имело несколько конкретных целей.


Во-первых, предполагалось создать пространственную картину связей всех клеток нервной системы с помощью электронномикроскопического анализа многих тысяч серийных срезов.


Во-вторых, определялась химическая природа синапсов и выявлялись мутационные изменения, влияющие на поведение животного, последние сопоставлялись с изменениями в "рисунке" соединения клеток и/или химизме синапсов.


Описано несколько сот мутаций С. elegans, и примерно 2/3 из них затрагивают поведение. В спектр поведенческих изменений входят нарушения координации движений червя (рис. 8.6,6), аномалии строения тела, которые влекут за собой аномальные движения, изменения хемотаксиса, нарушение откладки яиц.


Примерно у половины мутантов с нарушенным поведением были найдены отклонения в строении нервной системы. Их можно разделить на 4 категории.


1. Изменения в клетках-предшественницах нейронов. Поскольку ход нормального развития нейронов из нейробластов изучен у этого вида достаточно хорошо, мутации в этих элементах легко обнаружить. Они могут проявляться в виде особенностей поведения на разных стадиях развития организма.


2. Изменения в специфичности синаптических связей. Поскольку соединения нейронов взрослой особи дикого типа уже известны, возникающие вследствие мутаций структурные изменения синаптических соединений можно с достаточной надежностью сопоставить с аномалиями поведения у таких животных.


3. Изменения в расположении отростков нейронов. Созданная полная топографическая карта нервной системы С. elegans позволяет выделить таких мутантов, у которых отростки нейронов идут к аномальным мишеням. Такие мутации изменяют направление прорастания и характер контактов у нейронов сразу нескольких классов. Очевидно, что изменения поведения при этом достаточно разнообразны.


4. Изменения в функции нейромедиаторов. Эту категорию эффектов оказалось возможным проанализировать с развитием методов иммуноцитохимии и биохимии. Данные о медиаторной специфичности конкретных нейронов, как правило, оказываются неточными.


Электрофизиологические исследования этого объекта практически невозможны из-за его малого размера, поэтому сведения о нейрохимической специфичности нейронов того или иного класса сопоставляют с электрофизиологическими реакциями сходных групп клеток другой нематоды — Ascaris . У C. elegans обнаружены классические нейромедиаторы — ацетилхолин, ГАМК и биогенные амины.


Реакция на химические сигналы. Мутации, индуцированные хими





Похожие новости: